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Abstract Fractional reaction–diffusion equations serve as more relevant models for
studying complex patterns in several fields of nonlinear sciences. In this paper, we have
developed the wavelet methods to find the approximate solutions for the Fitzhugh–
Nagumo (FN) and fractional FN equations. The proposed method techniques provide
the solutions in rapid convergence series with computable terms. To the best of our
knowledge, until now there is no rigorous wavelet solutions have been reported for the
FN and fractional FN equations arising in gene propagation and model. With the help
of Laplace operator and Legendre wavelets operational matrices, the FN equation is
converted into an algebraic system. Finally, we have given some numerical examples
to demonstrate the validity and applicability of the wavelet methods. The power of the
manageable method is confirmed. Moreover, the use of the wavelet methods is found
to be accurate, efficient, simple, low computation costs and computationally attractive.

Keywords Fitzhugh–Nagumo equations · Fractional FN equation · Haar wavelets ·
Laplace transform method · Legendre wavelets · Operational matrices · Homotopy
analysis method

1 Introduction

In recent years, nonlinear reaction–diffusion equations (NLRDEs) have been widely
studied and applied in science, engineering and medicine [1,2]. Reaction–diffusion
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equations (RDEs) are commonly applied to model the growth and spreading of bio-
logical species [3]. A fractional reaction–diffusion equation (FRDE) can be derived
from a continuous-time random walk model when the transport is dispersive or a
continuous-time random walk model with temporal memory and sources [4]. In recent
years, the FRDE has received the applications in systems biology [5–9], chemistry, and
biochemistry applications [10]. Another time-FRDE is the time-fractional Fitzhugh–
Nagumo (FN) equation. It is an important NLRDE in population genetics [11], circuit
theory [8,12,13], Ventricle tissue model [11,14–16] and usually used to model the
transmission of nerve impulses [11,12]. In 1952, Hodgkin and Huxley [17] devel-
oped an efficient FN models for the conduction of nerve impulses along axon. They
established a mathematical model to describe the membrane’s behavior by consid-
ering the conduction and excitation of the fiber [18]. The FN models were derived
by both Fitzhugh [12] and Nagumo et al. [19]. In recent years, these models are
important nonlinear reaction–diffusion models used in circuit theory, biology and the
area of population genetics [11]. The FN model equations describe the dynamical
behavior near the bifurcation point for the Rayleigh-Benard convection of binary fluid
mixtures [20]. But these nonlinear PDEs are difficult to get their exact solutions. So
the approximation and numerical methods must be used. The numerical solutions of
the NLRDEs have received considerable attention in the literature and fall into two
groups: The analytical methods and the numerical ones. Analytical methods enable
researchers to study the effect of different variables or parameters on the function
under study easily. Recently, there are many new algorithms for NLRDEs have been
proposed, for example, the Adomian decomposition Method [21,22], Pseudo-Spectral
method [23,24], generalized differential transform method [25], the Homotopy Analy-
sis method (HAM) [9,15,26,27], Haar wavelet method [21,28–33], Legendre wavelet
method [34–36] and other methods [37–40]. Recently, Khan et al. [15] introduced the
approximate analytical solutions of FRDEs.

Turut and Guzel [41] had applied the multivariate pade approximation (MPA) for the
time-fractional RDEs. Malfliet [42] presented the solitary wave solutions of nonlinear
wave equations. Elagan et al. [43] applied the generalized (G′/G) expansion method
for the generalized FN equations. Hajipour and Mahmoudi [44] had used the exp-
function method to FN equations.

Wavelets theory is a relatively new and as emerging area in applied mathemat-
ical research. It has been applied many different field of science and Engineering.
Moreover wavelet transform establishes a connection with efficient and fast numeri-
cal algorithms.

In recent years, wavelet transforms have found their way into many different fields
in science, engineering and medicine. Wavelet analysis or wavelet theory, as a rel-
atively new and an emerging area in applied mathematical research, has received
considerable attention in dealing with NLRDEs. It possesses many useful properties,
such as Compact support, orthogonality, dyadic, orthonormality and multi-resolution
analysis (MRA) [21,28–30]. Recently, Haar wavelets have been applied extensively
for signal processing in communications and physics research, and have proved to
be a wonderful mathematical tool. After discretizing the differential equations in a
conventional way like the finite difference approximation, wavelets can be used for
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algebraic manipulations in the system of equations obtained which lead to better con-
dition number of the resulting system.

In the numerical analysis, wavelet based methods and hybrid methods become
important tools because of the properties of localization. In wavelet based methods,
there are two important ways of improving the approximation of the solutions: Increas-
ing the order of the wavelet family and the increasing the resolution level of the wavelet.
There is a growing interest in using various wavelets [21,28–30,34–36,45] to study
problems, of greater computational complexity. Among the wavelet transform families
the Haar and Legendre wavelets deserve much attention. The basic idea of Legendre
wavelet method is to convert the Partial differential equations to a system of algebraic
equations by the operational matrices of integral or derivative [30]. The main goal is
to show how wavelets and MRA can be applied for improving the method in terms
of easy implementability and achieving the rapidity of its convergence. Razzaghi and
Yousefi [46,47] introduced the Legendre wavelet method for solving variational prob-
lems and constrained optimal control problems. Recently, Hariharan et al. [21,28–30]
introduced the diffusion equation, convection-diffusion equation, reaction–diffusion
equation, nonlinear parabolic equations, fractional Klein–Gordon equations, Sine–
Gordon equations and Fisher’s equation by the Haar wavelet method. Mohammadi
and Hosseini [48] had showed a new Legendre wavelet operational matrix of deriv-
ative in solving singular ordinary differential equations. Parsian [49] introduced two
dimensional Legendre wavelets and operational matrices of integration. Yousefi [50]
introduced the Legendre wavelets for solving Lane-Emden type differential equations.
Recently, Yin et al. [51] introduced the a coupled method of Laplace Transform and
Legendre Wavelets for Lane–Emden type differential Equations,

In this paper, we have applied Haar and Legendre wavelets for FN and time-
fractional FN equations arising in population genetics.

This paper is summarized as follows: Haar and Legendre wavelets and their prop-
erties are demonstrated in Sect. 2. Then, the methods of solution for the FN and
fractional FN equations are presented in Sect. 3. In Sect. 4, the convergence analysis
is described. Illustrative examples are given to demonstrate the effectiveness of the
proposed method in Sect. 5. Concluding remarks are given in Sect. 6.

2 Haar and Legendre wavelets

2.1 Haar wavelet method (HWM)

Haar wavelet was a system of square wave; the first curve was marked up as h0(t),
the second curve marked up as h1(t) that is

h0 (t) =
{

1, 0 ≤ x < 1
0, otherwise

h1 (t) =
⎧⎨
⎩

1, 0 ≤ x < 1/2,
−1, 1/2 ≤ x < 1,
0, otherwise,
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where h0(t) is scaling function, h1(t) is mother wavelet. In order to perform wavelet
transform, Haar wavelet uses dilations and translations of function, i.e. the transform
make the following function.

hn(t) = h1

(
2 j t − k

)
, n = 2 j + k, j ≥ 0, 0 ≤ k < 2 j . (2.1)

Chen and Hsiao [52] raised the ideology of operational matrix in 1975, investigated
the generalized integral operational matrix, that is, the integral of matrix φ(t) can be
approximated as follows:

t∫
0

φ (t) dt ∼= Qφφ (t) (2.2)

where Qφ is an operational matrix of one-time integral matrix φ(t), similarly, we can
get operational matrix Qn

φ of n-time integral of φ(t). For example, the operational
matrix of �(t) can be expressed by following:

Q� = �Q B�
−1 (2.3)

Here Q B is the operational matrix of the block pulse function.

Q Bm=
1

2m

⎡
⎢⎢⎢⎢⎢⎣

1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...
...
...
...

...

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

(2.4)

where m is the dimension of matrix �(t), and usually m = 2α, α is positive integer.
If�(t) is a unitary matrix, then Q� = �Q B�

T , Q� is a matrix with characteristic
of briefness and profound utility.

For x ∈ [0, 1] , Haar wavelet function is defined as follows:

h0 (x) = 1√
m

hi (x) = 1√
m

⎧⎪⎨
⎪⎩

2
j
2 , k−1

2 j ≤ x < k−(1/2)
2 j

−2
j
2 ,

k−(1/2)
2 j ≤ x < k

2 j

0, otherwise

(2.5)

Integer m = 2 j ( j = 0, 1, 2 . . . J ) indicates the level of the wavelet; i =
0, 1, 2, . . .m − 1 is the translation parameter. Maximal level of resolution is J. The
index i is calculated according the formula i = m+k−1; in the case of minimal values
m = 1, k = 0 we have i = 2, the maximal value of i is i = 2M = 2J+1. It is assumed
that the value i = 1 corresponds to the scaling function for which h1 ≡ 1in [0, 1]. Let
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us define the collocation points tl = (l − 0.5)/2M, (l = 1, 2 . . . 2M) and discretise
the Haar function hi (x); in this way we get the coefficient matrix H(i, l) = (hi (xl)),
which has the dimension 2M × 2M .

2.2 Function approximation

Any square integrable function y(x) ∈ L2 [0, 1) can be expanded by a Haar series of
infinite terms

y(x, t) ≈
m−1∑
i=0

m−1∑
j=0

ci j hi (x)h j (t), (2.6)

where the Haar coefficients ci j are determined as,

ci, j =
1∫

0

y (x, t) hi (x) dx ·
1∫

0

y (x, t) h j (t) dt, (i, j = 0, 1, 2, . . . ,m − 1) (2.7)

are coefficients, discrete y (x, t) by choosing the same step of x and t , we obtain

Y (x, t) = H T (x)C H (t) (2.8)

where Y (x, t) is the discrete form of y (x, t) , and

H =

⎡
⎢⎢⎢⎣

h0,0 h0,1 · · · h0,m−1
h1,0 h1,1 · · · h1,m−1
...

...
...

...

hm−1,0 hm−1,1 · · · hm−1,m−1

⎤
⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎣

c0,0 c0,1 · · · c0,m−1
c1,0 c1,1 · · · c1,m−1
...

...
...

...

cm−1,0 cm−1,1 · · · cm−1,m−1

⎤
⎥⎥⎥⎦

C is the coefficient matrix of Y , and it can be obtained by formula:

C =
(

H T
)−1

Y H−1. (2.9)

H is an orthogonal matrix, then

C = H · Y · H−1. (2.10)
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The operational matrix of integration P, which is a 2M square matrix, is defined by
the equation

(P H)il =
tl∫

0

hi (t)dt

(Q H)il =
tl∫

0

dt

t∫
0

hi (t)dt

H2 =
(

1 1
1 −1

)
, P2 = 1

4

(
2 −1
1 0

)

H4 =

⎡
⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

⎤
⎥⎥⎦
,

P4 = 1

16

⎡
⎢⎢⎣

8 −4 −2 −2
4 0 −2 2
1 1 0 0
1 −1 0 0

⎤
⎥⎥⎦

P8 = 1

64

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

32 −16 −8 −8 −4 −4 −4 −4
16 0 −8 8 −4 −4 4 4
4 4 0 0 −4 4 0 0
4 4 0 0 −4 4 0 0
1 1 2 0 0 0 0 0
1 1 −2 0 0 0 0 0
1 −1 0 2 0 0 0 0
1 −1 0 −2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Chen and Hsiao [52] showed that the following matrix equation for calculating the
matrix Pof order m holds

P(m) = 1

2m

(
2m P(m/2) −H(m/2)
H−1
(m/2) O

)

where O is a null matrix of order m
2 × m

2 ,

Hm×m�=
[
hm(t0)hm(t1) . . . hm(tm−1)

]

Here i
m ≤ t < i + 1

m and

H−1
mxm = 1

m
H T

mxmdiag(r)

It should be noted that calculations for P(m) and H(m) must be carried out only once;
after that they will be applicable for solving whatever differential equations.
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2.3 Legendre wavelets

2.3.1 Legendre wavelets and its properties

The Legendre wavelets are defined by

ψnm(t) =
{ √

m + 1
2 2

k
2 Lm(2kt − �

n),

0,

for
�
n −1

2k ≤ t ≤
�
n +1

2k

otherwise

, (2.11)

where m = 0, 1, 2, . . . ,M − 1, and n = 1, 2, . . . , 2k−1. The coefficient
√

m + 1
2 is

for orthonormality, then, the waveletsΨk,m (x) form an orthonormal basis for L2[0,1].
In the above formulation of Legendre wavelets, the Legendre polynomials are in the
following way:

p0 = 1,

p1 = x,

pm+1 (x) = 2m + 1

m + 1
xpm (x)− m

m + 1
pm−1 (x) . (2.12)

and {pm+1(x)} are the orthogonal functions of order m, which is named the well-known
shifted Legendre polynomials on the interval [0,1]. Note that, in the general form of
Legendre wavelets, the dilation parameter is a = 2−j and the translation parameter is
b = n2j [51].

2.3.2 Two-dimensional Legendre wavelets (Yin et al. [51])

Two-dimensional Legendre wavelets in L2( R ) over the interval [0, 1] × [0, 1] as the
form

Ψn,m,n′,m′ (x, y) =

⎧⎪⎨
⎪⎩

√(
m + 1

2

) (
m′ + 1

2

)
2

k+k′
2 pm (x) pm′ (y) ,

n−1
2k−1 ≤ x ≤ n

2k−1 ,
n′−1
2k−1 ≤ y ≤ n′

2k′−1 ;
0, otherwise.

(2.13)

and m = 0, 1, 2, . . .,M − 1,m′ = 0, 1, 2, 3, . . .M′ − 1, n = 1, 2, . . ., 2k−1,

n′ = 1, 2, . . .2k′−1

where

Pm (x) = Pm′
(

2k x − 2n + 1
)
, Pm′ (y) = Pm′

(
2k′

y − 2n′ + 1
)
, (2.14)

Pm are Legendre functions of order m defined over the interval [−1, 1].
By using two-dimensional shifted Legendre polynomials into x ∈

[
n−1
2k−1 ,

n
2k−1

]
and
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y ∈
[

n′−1
2k′−1 ,

n′
2k′−1

]
, the

∫ 1
0 Ψn,m,n′,m′ (x, y) can be written as

1∫
0

	n,m,n′,m′ (x, y) = Am,m′ · Pm′ (x) Pm′ (y) χ⎡
⎣

n−1
2k−1 ,

n
2k−1

n′−1
2k′−1 ,

n′
2k′−1

⎤
⎦
(x, y) , (2.15)

In which Am,m′ =
√(

m + 1
2

) (
m′ + 1

2

)
2

k+k′
2 andχ⎡

⎣
n−1
2k−1 ,

n
2k−1

n′−1
2k′−1 ,

n′
2k′−1

⎤
⎦
(x, y) is a character-

istic function defined asχ⎡
⎣

n−1
2k−1 ,

n
2k−1

n′−1
2k′−1 ,

n′
2k′−1

⎤
⎦
(x, y)=

{
1, x ∈

[
n−1
2k−1 ,

n
2k−1

]
, y ∈

[
n′−1
2k′−1 ,

n′
2k′−1

]
;

0, otherwise

Two dimension Legendre Wavelets are an orthonormal set over [0, 1] × [0, 1].
1∫

0

1∫
0

Ψn,m,n′,m′ (x, y) Ψn1,m1,n′
1,m

′
1
(x, y) dxdy = δn,n1δn′,n′

1
δm′,m′

1
(2.16)

The function u(x, y) ∈ L2 (R) defined over [0, 1] × [0, 1] may be expanded as

u(x, y) = X(x)Y(y) ∼=
∞∑

n=1

∞∑
m=0

∞∑
n′=1

∞∑
m′=0

cn,m,n′,m′ Ψn,m,n′,m′(x, y) (2.17)

If the infinite series in Eq. (2.17) is truncated, then Eq. (2.17) can be written as

u(x, y) = X(x)Y(y) ∼=
2k−1∑
n=1

M−1∑
m=0

2k′−1∑
n′=1

M ′−1∑
m′=0

cn,m,n′,m′ Ψn,m,n′,m′(x, y) (2.18)

where cn,m,n′,m′ = ∫ 1
0

∫ 1
0 X (x) Y (y) Ψn,m,n′,m′ (x, y) dxdy. The Eq. (2.18) can be

expressed as the form

u (x, y) = cT · Ψ (x, y) (2.19)

where C and 	(x,y) are coefficients matrix and wavelets vector matrix respectively.
The number of dimensions of C and 	(x,y) are 2k−12k′−1MM′ × 1, and given by

C = [
c1,0,1,0, . . . c1,0,1,M ′−1, c1,0,2,0, . . . , c1,0,2,M ′−1, . . . ,

c1,0,2k′−1,0, . . . , c1,0,2k′−1,M ′−1, . . . , c1,M−1,1,0, . . . ,

c1,M−1,1,M ′−1,c1,M−1,2,0, . . . , c1,M−1,2,M ′−1, . . . , c1,M−1,2K−1,0, . . . ,

c1,M−1,2K−1,M ′−1, . . . , c2,0,1,0, . . . , c2,0,1,M ′−1, c2,0,2,0, . . . ,
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c2,0,2,M ′−1, . . . , c2,0,2K−1,0, . . . , c2,0,2k−1,M ′−1, . . . ,

c2,M−1,1,0 . . . , c2,M−1,1,M ′−1, c2,M−1,2,0, . . . , c2,M−1,2,M ′−1, . . . ,

c2,M−1,2k−1,0, . . . , c2,M−1,2k−1,M ′−1, . . . , c2k−1,0,1,0, . . . ,

c2k−1,0,1M ′−1, c2k−1,0,2,0, . . . , c2k−1,0,M ′−1, . . . ,

c2k−1,0,2k−1,0, . . . , c2k−1,M−1,2k′−1,M ′−1

]T
(2.20)

	 =
[
	1,0,1,0, . . . , 	1,0,1,M ′−1, 	1,0,2,0, . . . 	1,0,2k−1,0, . . . 	1,0,2k′−1,M ′−1, . . . ,

	1,M−1,1,0, . . . 	1,M−1,1,M ′−1, 	1,M−1,2,0, . . . , 	1,M−1,2,M ′−1, . . . ,

	1,M−1,2k−1,0, . . . , 	1,M−1,2k−1,M ′−1, . . . , 	2,0,1,0, . . . ,

	2,0,1,M ′−1, 	2,0,2,0, . . . 	2,0,2,M ′−1, . . . , 	2,0,2k′−1,0, . . . ,

	2,0,2k−1,M ′−1, . . . , 	2,M−1,1,0, . . . , 	2,M−1,1,M ′−1, 	2,M−1,2,0, . . . ,

	2,M−1,2,M ′−1, . . . , 	2,M−1,2k′−1,0, . . . , 	2,M−1,2k′−1,M ′−1,

	2k−1,0,1,0, . . . , 	2k−1,0,1,M ′−1, 	2k−1,0,2,0, . . . ,

	2k−1,0,2,M ′−1, . . . , 	2k−1,0,2k−1 , . . . 	2k−1,M−1,2k−2,M ′−1

]
T (2.21)

The integration of the product of two Legendre wavelet function vectors is obtained
as

1∫
0

1∫
0

Ψ (x, y) Ψ T (x, y) dxdy = I (2.22)

where I is the identity matrix.
A two-dimensional function f(x,y) defined [0, 1) × [0, 1) may be expanded by

Legendre wavelet series as

f (x, y) =
2k M∑
i=1

2k M∑
j=1

Ci j	i(x)	j(y) = 	T (x)C	(y) (2.23)

where

Ci j =
1∫

0

f (x, y)	i (x) dx

1∫
0

f(x, y)	j (y) dt (2.24)

Equation (2.23) can be written into the discrete form (in matrix form) by

f (x, y) = 	T (x)C	(y) (2.25)
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where C and 	(t) are 2k−1 M × 1 matrices given by

C =

⎡
⎢⎢⎢⎣

c0,0 c0,1 . . . c0,2k−1 M
c1,0 c1,1 . . . c1,2k−1 M
...

...
. . .

...

c2k−1 M,0 c2k−1M,1 . . . c2k−1 M2k−1 M

⎤
⎥⎥⎥⎦

The two dimensional Legendre wavelet operational matrix of integration has been
derived in Ref. [49].

Theorem 2.1 Let 	(x, y) be the two-dimensional Legendre wavelets vector defined
in Eq. (2.26), we have

∂	(x, y)

∂x
= Dx	(x, y), (2.26)

where Dx is 2k−1, 2k′−1 M M ′ × 2k−12k′−1 M M ′ and has the form as follows:

Dx =

⎡
⎢⎢⎢⎣

D O ′ . . . O ′
O ′ D . . . O ′
...

...
. . .

...

O ′ O ′ . . . D

⎤
⎥⎥⎥⎦ ,

in which O ′ and D is 2k−12k′−1 M M ′ × 2k−12k′−1 M M ′ matrix and the element of D
is defined as follows:

Dr,s =
{

2k√(2r −1) (2s−1)I, r = 2, 3, . . .M; s = 1, . . . r −1; r +s is odd
0 otherwise

(2.27)

and I, O are 2k′−1 M ′ × 2k′−1 M ′ identity matrix.

Theorem 2.2 Let 	 (x, y) be the two-dimensional Legendre wavelets vector defined
in Eq. (2.26), we have

∂	 (x, y)

∂x
= Dy	 (x, y) , (2.28)

Dy =

⎡
⎢⎢⎢⎣

D O ′ . . . O ′
O ′ D . . . O ′
...

...
. . .

...

O ′ O ′ . . . D

⎤
⎥⎥⎥⎦ ,

123



2442 J Math Chem (2013) 51:2432–2454

where Dy is 2k−1, 2k′−1 M M ′ × 2k−12k′−1 M M ′ and O ′, D is M M ′ × M M ′ matrix
is given as

D =

⎡
⎢⎢⎢⎣

F O . . . O
O F . . . O
...

...
. . .

...

O O . . . F

⎤
⎥⎥⎥⎦ ,

in which O and F is M′ × M′ matrix, and F is defined as follows:

Fr,s =
{

2k′√
(2r −1) (2s−1), r =2, . . . ,M ′; S =1, . . . , r − 1; and r + s is odd

0, otherwise

(2.29)

Using Eqs. (2.26) and (2.28), the operational matrices for nth derivative can be derived
as

∂n	 (x, y)

∂xn
= Dn

x	 (x, y) ,
∂m	 (x, y)

∂ym
= Dm

y 	 (x, y)

∂n+m	 (x, y)

∂xn∂ym
= Dn

x Dm
y 	 (x, y) ,

where Dn is the nth power of matrix D.

2.4 Block pulse functions (BPFs)

The block pulse functions form a complete set of orthogonal functions which defined
on the interval [0, b) by

bi (t) =
{

1, i−1
m b ≤ t < i

m b,
0, elsewhere

(2.30)

for i = 1, 2, . . .,m. It is also known that for any absolutely integrable function f(t) on
[0,b) can be expanded in block pulse functions:

f (t) ∼= ξ T Bm(t) (2.31)

ξ T = [ f1, f2, . . . , fm] , Bm (t) = [b1 (t) , b2 (t) , . . . , bm (t)] (2.32)

where fi are the coefficients of the block-pulse function, given by

fi = m

b

b∫
0

f (t) bi (t) dt (2.33)
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Remark 1 Let A and B are two matrices of m × m, then A ⊗ B = (
ai j × bi j

)
mm .

Lemma 1 Assuming f(t) and g(t) are two absolutely integrable functions, which can
be expanded in block pulse function as f(t)=FB(t) and g(t)=GB(t) respectively, then
we have

f (t) g (t) = F B (t) BT (t)GT = H B (t) (2.34)

where H = F ⊗ G.

2.5 Approximating the nonlinear term

The Legendre wavelets can be expanded into m-set of block-pulse Functions as

Ψ (t) = ∅m×m Bm(t) (2.35)

Taking the collocation points as following

ti = i − 1/2

2k−1 M
, i = 1, 2, . . . , 2k−1 M (2.36)

The m-square Legendre matrix ∅m×m is defined as

∅m×m ∼= [
Ψ (t1) Ψ (t2) . . . Ψ (t2k−1 M )

]
(2.37)

The operational matrix of product of Legendre wavelets can be obtained by using
the properties of BPFs, let f (x, t) and g(x, t) are two absolutely integrable func-
tions, which can be expanded by Legendre wavelets as f (x, t) = Ψ T (x) FΨ (t) and
g (x, t) = Ψ T (x)GΨ (t) respectively.

From Eq. (2.24), we have

f (x, t) = Ψ T (x) FΨ (t) = BT (x) ∅T
m m F∅mm B (t) , (2.38)

g (x, t) = Ψ T (x)GΨ (t) = BT (x) ∅T
m m G∅mm B (t) , (2.39)

and Fb = ∅T
m m F∅mm,Gb = ∅T

mm G∅mm, Hb = Fb ⊗ Gb.
Then,

f (x, t) g (x, t) = BT Hb B (t) ,

= BT (x) ∅T
m minv

(
∅T

m m

)
Hbinv

(
inv

(
∅T

m m

)
Hbinv (∅m m)

)
×∅m m B (t)

= Ψ T (x) HΨ (t) (2.40)

where H = inv
(∅T

m m

)
Hbinv ((∅mm))
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2.6 Function approximation

A given function f(x) with the domain [0,1] can be approximated by:

f(x)
∞∑

k=1

∞∑
m=0

ck,mΨk,m (x) = CT · Ψ (x) . (2.41)

If the infinite series in Eq. (2.31) is truncated, then this equation can be written as:

f (x) 

∞∑

k=1

∞∑
m=0

ck,mΨk,m (x) = CT · Ψ (x) . (2.42)

where C and Ψ are the matrices of size (2j−1M × 1).

C =
[
c1,0, c1,1, . . .c1,M−1, c2,0, c2,1, . . .c2,M−1, . . .c

j−1
2,1 , . . .c

j−1
2 ,M−1

]T
(2.43)

Ψ (x) = [
Ψ1,0, Ψ1,1, Ψ2,0, Ψ2,1, . . . Ψ2,M−1, . . . Ψ2 j−1,M−1

]T
. (2.44)

2.6.1 Definitions of fractional derivatives and integrals

In this paper, we shall use the Caputo derivative Dα proposed by Caputo in his work on
the theory of viscoelasticity. In the development of theories of fractional derivatives and
integrals, it appears many definitions such as Riemann-Liouville and Caputo fractional
differential-integral definition as follows.

(1) Riemann–Liouville definition:

R
a Dα

t f (t) =
{

dm f (t)
dtm , α = m ∈ N ;

dm

dtm
1

�(m−α)
∫ t

a
f (T )

(t−T )α−m+1 dT, 0 ≤ m − 1 < α < m.

Fractional integral of order α is as follows:

R
a I αt f (t) = 1

� (−α)
t∫

0

(t − T )−α−1 f (T ) dT, α < 0.

(2) Caputo definition:

c
a Dα

t f (t) =
{ dm f (t)

dtm , α = m ∈ N ;
1

�(m−α)
∫ t

a
f (m)(T )

(t−T )α−m+1 dT, 0 ≤ m − 1 < α < m.

123



J Math Chem (2013) 51:2432–2454 2445

3 Method of solution

3.1 Solving Fitzhugh–Nagumo (FN) equation by the Haar wavelet method (HWM)

We consider the FN equation [31]

∂u

∂t
= ∂2u

∂x2 + u (u − α) (1 − u) (3.1)

Since u (x, t) ∈ L2 (R), we suppose

u(x, t) ≈
m−1∑
i=0

m−1∑
j=0

ci j hi (x)h j (t), (3.2)

Then we can obtain the discrete form of Eq. (3.13) by taking step � = 1/m of x, t ,
there is

u = H T (x)C H (t) (3.3)
∂u

∂t
≈ H T (x)C

∂

∂t
H (t)

= H T (x)C Q−1
H H (t) (3.4)

∂2u

∂x2 ≈ H T (x)
(

Q−2
H

)T
C H (t) (3.5)

Substitute Eqs. (3.3)–(3.5) into Eq. (3.1), there is

H T (x)C Q−1
H H (t)

= H T (x)
(

Q−2
H

)T
C H (t)+ H T (x)C H (t)

(
H T (x)C H (t)− α

)

×
(

1 − H T (x)C H (t)
)

(3.6)

From the above formula, the wavelet coefficient C can be calculated successively.

3.2 Solving Fitzhugh–Nagumo (FN) equation by the LLWM

We consider the Eq. (3.1) [31]
Taking Laplace transform on both sides of Eq. (3.1), we get

sL(u)− u(x, 0) = L[uxx − u2 − u3 − uα + u2α] (3.7)

sL(u) = u(x, 0)+ L[uxx − u2 − u3 − uα + u2α] (3.8)

L(u) = s−1 (u(x, 0))+ s−1
(

L[uxx − u2 − u3 − uα + u2α]
)

(3.9)
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Taking inverse Laplace transform on both sides of Eq. (3.9)

u = u(x, 0)+ L−1
(

s−1L
[
uxx − u2 − u3 − uα + u2α

])
(3.10)

Because

L−1
[
s−1(tn)

]
= L−1

(
n!s−(n+2)

)

= 1

n + 1
tn+1; (n = 0, 1, 2, . . .) (3.11)

We have

L−1[s−1L(·)] =
t∫

0

(·)dt (3.12)

From Eq. (3.10), we gain

u = u(x, 0)+ L−1(s−1L[uxx + g(u)]), (3.13)

where g (u) = u2α − uα + u2 − u3

Using the Legendre wavelets method,

u = CTψ(x, t) (3.14)

u(x, 0) = STψ(x, t)
g(u) = GTψ(x, t)

}
(3.15)

Substituting Eqs. (3.14) and (3.15) in Eq. (3.13), we obtain

CT = ST + (CT Dx2 + GT )P2
t (3.16)

Here GT has a nonlinear relation with C. When we solve a nonlinear algebraic system,
we get the solution is more complex and large computation time. In order to overcome
the above drawbacks, we introduce an approximation formula as follows:

un+1 = u (x, 0)+�

(
∂2un

∂x2 + g (un)

)
, (3.17)

where g (u) = u2α − uα + u2 − u3

We start the first iteration; an initial guess of the solution of u0 is required. We
select

u0 = u (x, 0) , and expanding u by Legendre wavelets, we gain

CT
n+1 = CT

0 +
[
CT

n D2
x + GT

n

]
P2

t (3.18)
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4 Convergence analysis

u∗ = u0 +�
(

u
∗
xx + g

(
u

∗))
(4.1)

and

un+1 = u0 +�
(
(un)xx + g (un)

)
(4.2)

Subtracting Eq. (4.1) from Eq.(4.2), we obtain

un+1 − u∗ = �
[(

un − u
∗)

xx
+

(
g (un)− g

(
u

∗))]
(4.3)

Using Lispschitz condition,

∥∥g(un)− g(u∗)
∥∥ ≤ γ

∥∥un − u∗∥∥ (4.4)

We have

∥∥un+1 − u∗∥∥ ≤
∥∥∥∏

(un − u∗)xx

∥∥∥ +
∥∥∥∏

(g(un)− g(u∗)
∥∥∥ (4.5)

≤
∥∥∥∏

(un − u∗)xx

∥∥∥ + γ
∥∥un − u∗∥∥ (4.6)

Let

un+1 = CT
n+1ψ(x, t) (4.7)

u∗ = CTψ(x, t) (4.8)

∈T
n+1= CT

n+1 − CT (4.9)

From Eq. (4.6), we obtain the formula

∈T
n+1≤∈T

n

∥∥∥D2
x P2

t + γ P2
t

∥∥∥ (4.10)

By recursion, we get

∈T
n+1≤∈T

n

∥∥∥D2
x P2

t + γ P2
t

∥∥∥n ∈0 (4.11)

When Lim
n→∞

∥∥D2
x P2

t + γ P2
t

∥∥n = 0, the series solution of Eq. (3.1) using the LLWM

converges to u
∗
(x). By using the definitions of Dx and Pt , we can get the value of γ .
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Suppose k = k′ = 1 and M = M ′, the maximum element of Dx and Pt is
2
√
(2M − 1) (2M − 3) and 0.5 respectively.

5 Numerical examples

In this section, three examples are given for demonstrating the validity and applicability
of the proposed wavelet methods.

Example 5.1 Consider the FN equation

∂u

∂t
= ∂2u

∂x2 + u (u − α) (1 − u) , 0 < α < 1 (5.1)

Subject to the initial condition

u (x, 0) = f (x) (5.2)

Using HAM, the exact solution in a closed form is given by

u (x, t) = 1

1 + e

( −x+ct√
2

) , (5.3)

which is full agreement with the results in [22], where c = √
2

( 1
2 − α

)
.

The Haar wavelet scheme is given by

H T (x)C Q−1
H H (t)

= H T (x)
(

Q−2
H

)T
C H (t)+ H T (x)C H (t)

(
H T (x)C H (t)− α

)

×
(

1 − H T (x)C H (t)
)

Our proposed wavelet methods HWM and LLWM can be compared with Wazwaz and
Gorguis results (see Ref. [22]) and Mehmet Merdan results (see Ref. [53])

Example 5.2 We consider the time-fractional FN equation (Wazwaz and Gorguis [22])

∂αu

∂tα
= ∂2u

∂x2 + u (u − μ) (1 − u) , μ > 0, 0 < α ≤ 1, t > 0, x ∈ � (5.4)

Subject to the initial condition

u (x, 0) = 1

1 + e

( −x√
2

) (5.5)

As α → 1 and h = −1, the exact solution of Eq. (5.4) in a closed form by the HAM
is given by
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Table 1 Numerical values when α = 0.5 and μ = 0.45 for Example 5.2

x t Exact solution
u H AM

Numerical
u H W M (m = 32)

Numerical
uL LW M (k = 1
andM = 3)

0.001 0.001 0.50026800 0.50026801 0.50026802

0.002 0.002 0.50027473 0.50027473 0.50027471

0.003 0.003 0.50017995 0.50017993 0.50017993

0.004 0.004 0.50010722 0.50010721 0.50010722

0.005 0.005 0.5002438 0.5002435 0.5002435

0.006 0.006 0.49993390 0.49993390 0.49993391

0.007 0.007 0.49998373 0.49998374 0.49998372

0.008 0.008 0.49992356 0.49992357 0.49992353

0.009 0.009 0.49973585 0.49973588 0.49973584

0.01 0.01 0.49963020 0.49963021 0.49963022

Table 2 Numerical values when α = 0.75 and μ = 0.45 for Example 5.2

x t Exact solution
u H AM

Numerical
u H W M (m = 32)

Numerical
uL LW M (k = 1
andM = 3)

0.001 0.001 0.49989967 0.49989969 0.49989966

0.002 0.002 0.49977499 0.49977498 0.49977497

0.003 0.003 0.49964385 0.49964388 0.49964388

0.004 0.004 0.49950898 0.49950889 0.49950892

0.005 0.005 0.49937151 0.49937150 0.49937151

0.006 0.006 0.49923211 0.49923210 0.49923210

0.007 0.007 0.49909115 0.49909111 0.49909113

0.008 0.008 0.49894892 0.49894890 0.49894891

0.009 0.009 0.49880561 0.49880558 0.49880560

0.01 0.01 0.49866137 0.49866132 0.49866132

u (x, t) = 1

1 + e

(
x√
2
+γ t

) , (5.6)

where γ = 1√
2

− √
2μ.

Our proposed methods HWM and LLWM can be compared with Wazwaz and
Gorguis results (see Ref. [22]), Soliman’s results [25] and Mehmet Merdan results
(see Ref. [53]).

The numerical solutions of time-fractional FN (Example 5.2) for different values
of α, (That is,α = 0.5, α = 0.75 and α = 1.0) and different values of t with μ = 0.45
are presented in Tables 1, 2 and 3. Table 4 shows the numerical solutions of time-
fractional FN equation for α = 0.7, t = 0.2 and μ = 0.6.The wavelet methods like

123



2450 J Math Chem (2013) 51:2432–2454

Table 3 Numerical values when α = 1.0 and μ = 0.45 for Example 5.2

x t Exact solution
u H AM

Numerical
u H W M (m = 32)

Numerical
uL LW M (k = 1
andM = 3)

0.001 0.001 0.49983572 0.49983568 0.49983571

0.002 0.002 0.49967144 0.49967142 0.49967145

0.003 0.003 0.49950716 0.49950715 0.49950715

0.004 0.004 0.49934288 0.49934286 0.49934288

0.005 0.005 0.49917859 0.49917857 0.49917858

0.006 0.006 0.49901431 0.49901431 0.49901430

0.007 0.007 0.49988501 0.49988501 0.49988502

0.008 0.008 0.49868574 0.49868570 0.49868571

0.009 0.009 0.49852145 0.49852142 0.49852146

0.01 0.01 0.49835716 0.49835710 0.49835712

Table 4 Numerical values
when α = 0.7, t = 0.2 and
μ = 0.6 for Example 5.2

x Exact solution
u H AM

Numerical
u H W M (m = 32)

Numerical
uL LW M (k = 1
andM = 3)

0.00 0.49065905 0.49065902 0.49065903

0.25 0.44663406 0.44663402 0.44663406

0.50 0.40245145 0.40245144 0.40245144

0.75 0.36175911 0.36175910 0.36175912

1.0 0.32225612 0.32225611 0.32225610

HWM and LLWM results are in excellent agreement with the exact solution and those
obtained by the HAM.

All the numerical experiments presented in this section were computed in double
precision with some MATLAB codes on a personal computer System Vostro 1,400
Processor 86× Family 6 Model 15 Stepping 13 Genuine Intel ∼1, 596 MHz.

6 Conclusion

Two reliable wavelet methods have been successfully employed to obtain the numeri-
cal solutions of FN and time-fractional FN equations arising in population dynamics.
The proposed schemes are the capability to overcome the difficulty arising in calcu-
lating the integral values while dealing with nonlinear problems. These two wavelet
methods show higher efficiency than the traditional Legendre wavelet method for
solving nonlinear PDEs. Numerical example illustrates the powerful of the proposed
schemes. Also this paper illustrates the validity and excellent potential of the wavelet
methods for nonlinear and fractional PDEs. The numerical solutions obtained using
the proposed method show that the solutions are in very good coincidence with the
exact solution. In addition the calculations involved in HWM and LLWM are sim-
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ple, straight forward and low computation cost. In Sect. 4, we have developed the
convergence of the proposed algorithm.

7 Appendix

7.1 Basic idea of Homotopy analysis method (HAM)

In this section the basic ideas of the HAM are presented. Here a description of the
method is given to handle the general nonlinear problem.

Nu0 (t) = 0, t > 0 (7.1)

where N is a nonlinear operator and u0(t) is unknown function of the independent
variable t.

7.2 Zero-order deformation equation

Let u0(t) denote the initial guess of the exact solution of Eq. (7.1), h �= 0 an auxiliary
parameter, H(t) �= 0 an auxiliary function and L is an auxiliary linear operator with
the property.

L ( f (t)) = 0, f (t) = 0. (7.2)

The auxiliary parameter h, the auxiliary function H(t), and the auxiliary linear
operator L play an important role within the HAM to adjust and control the convergence
region of solution series. Liao [26] constructs, using q ∈ [0, 1] as an embedding
parameter, the so-called zero-order deformation equation.

(1 − q) L[(∅ (t; q)− u0 (t)] = qh H (t) N [(∅ (t; q)] , (7.3)

where ∅ (t; q) is the solution which depends on h, H (t) , L , u0(t) and q. When q = 0,
the zero-order deformation Eq. (7.2) becomes

∅ (t; 0) = u0(t), (7.4)

and when q = 1, since h �= 0 and H(t) �= 0, the zero-order deformation Eq. (7.1)
reduces to,

N [∅ (t; 1)] = 0, (7.5)

So, ∅ (t; 1) is exactly the solution of the nonlinear equation. Define the so-called
mth order deformation derivatives.

um (t) = 1

m!
∂m∅ (t; q)

∂qm
(7.6)
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If the power series Eq. (7.3) of ∅ (t; q) converges at q = 1, then we gets the following
series solution:

u (t) = u0 (t)+
∞∑

m=1

um (t) . (7.7)

where the terms um (t) can be determined by the so-called high order deformation
described below.

7.3 High-order deformation equation

Define the vector,

−−→un ={u0 (t) , u1 (t) , u2 (t) . . . un (t) (7.8)

Differentiating Eq. (7.3) m times with respect to embedding parameter q, the setting
q = 0 and dividing them by m! , we have the so-called mth order deformation equation.

L
[
um (t)− ℵmum−1 (t)

] = h H (t) Rm
(−→um, t

)
, (7.9)

where

ℵm =
{

o, m ≤ 1
1, otherwise

(7.10)

and

Rm
(−→um, t

) = 1

(m − 1)!
∂m−1 N [∅(t; q)]

∂qm−1 (7.11)

For any given nonlinear operatorN , the term Rm
(−→um, t

)
can be easily expressed

by Eq. (7.11). Thus, we can gain u1 (t) , u2 (t) . . . . . .. by means of solving the lin-
ear high-order deformation with one after the other order in order. The mth –order
approximation of u (t) is given by

u (t) =
m∑

k=0

uk (t) (7.12)

ADM, VIM and HPM are special cases of HAM when we set h = −1 and H (r, t) = 1.
We will get the same solutions for all the problems by above methods when we set
h = −1 and H (r, t) = 1. When the base functions are introduced the H (r, t) = 1 is
properly chosen using the rule of solution expression, rule of coefficient of ergodicity
and rule of solution existence.
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